0

arXiv:2601.04983v1 Announce Type: cross
Abstract: Scaling quantum computers requires tight integration of cryogenic control electronics with quantum processors, where Digital-to-Analog Converters (DACs) face severe power and area constraints. We investigate quantum neural network (QNN) training and inference under finite DAC resolution constraints across various DAC resolutions. Pre-trained QNNs achieve accuracy nearly indistinguishable from infinite-precision baselines when deployed on quantum systems with 6-bit DAC control electronics, exhibiting an elbow curve with diminishing returns beyond 4 bits. However, training under quantization reveals gradient deadlock below 12-bit resolution as gradient magnitudes fall below quantization step sizes. We introduce temperature-controlled stochasticity that overcomes this through probabilistic parameter updates, enabling successful training at 4-10 bit resolutions that remarkably matches or exceeds infinite-precision baseline performance. Our findings demonstrate that low-resolution control electronics need not compromise QML performance, enabling significant power and area reduction in cryogenic control systems for practical deployment as quantum hardware scales.
Be respectful and constructive. Comments are moderated.

No comments yet.