0
Directly Constructing Low-Dimensional Solution Subspaces in Deep Neural Networks
arXiv:2512.23410v1 Announce Type: new
Abstract: While it is well-established that the weight matrices and feature manifolds of deep neural networks exhibit a low Intrinsic Dimension (ID), current state-of-the-art models still rely on massive high-dimensional widths. This redundancy is not required for representation, but is strictly necessary to solve the non-convex optimization search problem-finding a global minimum, which remains intractable for compact networks. In this work, we propose a constructive approach to bypass this optimization bottleneck. By decoupling the solution geometry from the ambient search space, we empirically demonstrate across ResNet-50, ViT, and BERT that the classification head can be compressed by even huge factors of 16 with negligible performance degradation. This motivates Subspace-Native Distillation as a novel paradigm: by defining the target directly in this constructed subspace, we provide a stable geometric coordinate system for student models, potentially allowing them to circumvent the high-dimensional search problem entirely and realize the vision of Train Big, Deploy Small.
Abstract: While it is well-established that the weight matrices and feature manifolds of deep neural networks exhibit a low Intrinsic Dimension (ID), current state-of-the-art models still rely on massive high-dimensional widths. This redundancy is not required for representation, but is strictly necessary to solve the non-convex optimization search problem-finding a global minimum, which remains intractable for compact networks. In this work, we propose a constructive approach to bypass this optimization bottleneck. By decoupling the solution geometry from the ambient search space, we empirically demonstrate across ResNet-50, ViT, and BERT that the classification head can be compressed by even huge factors of 16 with negligible performance degradation. This motivates Subspace-Native Distillation as a novel paradigm: by defining the target directly in this constructed subspace, we provide a stable geometric coordinate system for student models, potentially allowing them to circumvent the high-dimensional search problem entirely and realize the vision of Train Big, Deploy Small.
No comments yet.