0

arXiv:2510.22582v3 Announce Type: replace
Abstract: Cross-view geo-localization (CVGL) plays a vital role in drone-based multimedia applications, enabling precise localization by matching drone-captured aerial images against geo-tagged satellite databases in GNSS-denied environments. However, existing methods rely on resource-intensive feature alignment and multi-branch architectures, incurring high inference costs that limit their deployment on edge devices. We propose MobileGeo, a mobile-friendly framework designed for efficient on-device CVGL: 1) During training, a Hierarchical Distillation (HD-CVGL) paradigm, coupled with Uncertainty-Aware Prediction Alignment (UAPA), distills essential information into a compact model without incurring inference overhead. 2) During inference, an efficient Multi-view Selection Refinement Module (MSRM) leverages mutual information to filter redundant views and reduce computational load. Extensive experiments demonstrate that MobileGeo outperforms previous state-of-the-art methods, achieving a 4.19% improvement in AP on University1652 dataset while being over 5 times efficient in FLOPs and 3 times faster. Crucially, MobileGeo runs at 251.5 FPS on an NVIDIA AGX Orin edge device, demonstrating its practical viability for real-time on-device drone geo-localization. The code is available at https://github.com/SkyEyeLoc/MobileGeo.