0

arXiv:2601.05036v1 Announce Type: cross
Abstract: Quantum generative modeling is a very active area of research in looking for practical advantage in data analysis. Quantum generative adversarial networks (QGANs) are leading candidates for quantum generative modeling and have been applied to diverse areas, from high-energy physics to image generation. The latent style-based QGAN, relying on a classical variational autoencoder to encode the input data into a latent space and then using a style-based QGAN for data generation has been proven to be efficient for image generation or drug design, hinting at the use of far less trainable parameters than their classical counterpart to achieve comparable performance, however this advantage has never been systematically studied. We present in this work the first comprehensive experimental analysis of this advantage of QGANS applied to SAT4 image generation, obtaining an exponential advantage in capacity scaling for a quantum generator in the hybrid latent style-based QGAN architecture. Careful tuning of the autoencoder is crucial to obtain stable, reliable results. Once this tuning is performed and defining training optimality as when the training is stable and the FID score is low and stable as well, the optimal capacity (or number of trainable parameters) of the classical discriminator scales exponentially with respect to the capacity of the quantum generator, and the same is true for the capacity of the classical generator. This hints toward a type of quantum advantage for quantum generative modeling.